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Visual ensemble perception involves the rapid global
extraction of summary statistics (e.g., average features)
from groups of items, without requiring single-item
recognition and working memory resources. One theory
that helps explain global visual perception is the
principle of feature diagnosticity. This is when
informative bottom-up visual features are preferentially
processed to complete the task at hand by being
consistent with one’s top-down expectations. Past
literature has studied ensemble perception using groups
of objects and faces and has shown that both low-level
(e.g., average color, orientation) and high-level visual
statistics (e.g., average crowd animacy, object economic
value) can be efficiently extracted. However, no study
has explored whether summary statistics can be
extracted from stimuli higher in visual complexity,
necessitating global, gist-based processing for
perception. To investigate this, across five experiments
we had participants extract various summary statistical
features from ensembles of real-world scenes. We found
that average scene content (i.e., perceived naturalness
or manufacturedness of scene ensembles) and average
spatial boundary (i.e., perceived openness or closedness
of scene ensembles) could be rapidly extracted within
125 ms, without reliance on working memory.
Interestingly, when we rotated the scenes, average
scene orientation could not be extracted, likely because
the perception of diagnostic edge information (i.e.,
cardinal edges for typically encountered upright scenes)
was disrupted when rotating the scenes. These results
suggest that ensemble perception is a flexible resource
that can be used to extract summary statistical
information across multiple stimulus types but also has
limitations based on the principle of feature
diagnosticity in global visual perception.

Introduction

The processing of the abundant visual information
available to the brain is often impeded by limitations in
one’s working memory and selective attention (Dux &
Marois, 2010; Luck & Vogel, 2013; Simons & Levin,
1997). To circumvent this, visual processing must take
advantage of the inherent redundancy that often exists
in our visual field, in the form of repeating spatial
features such as global textures and patterns (Field,
1987; Kersten, 1987; Kinchla, 1977). Indeed, when
viewing groups of similar visual items (i.e., ensembles),
their redundancy allows for a compression of visual
information into a statistical summary or average,
enabling faster and more efficient processing.

Ensemble perception is the rapid and precise
encoding of statistical information (e.g., averages)
from multiple items, without the need to recognize any
individual item from the set (Whitney & Yamanashi
Leib, 2018). Summary statistics from ensembles have
been shown to be accurately coded for low-level features
such as average color (Maule, Witzel, & Franklin, 2014),
size (Ariely, 2001), motion (Watamaniuk & McKee,
1998), and orientation (Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001), and also for high-level
features such as average facial expression (Haberman &
Whitney, 2009) and crowd animacy (Yamanashi Leib,
Kosovicheva, &Whitney, 2016). Even though spreading
attention to multiple items decreases the resolution
and recognition accuracy for each individual item
(Ariely, 2001; Palmer, 1990), accuracy remains high for
classifications of the whole ensemble, because the noise
within each ensemble element is averaged out of the
overall percept (Alvarez, 2011). The fidelity of global
ensemble summary statistics—at the expense of local
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precision—supports research suggesting that visual
processing is neither strictly bottom-up or top-down,
but rather is a specific optimized combination of both
that most efficiently encodes the current stimuli at the
time (Kinchla & Wolfe, 1979).

The parahippocampal place area (PPA) plays a key
role in optimally extracting global ensemble features.
For example, in ensembles composed of similar objects,
the processing of both the shape and texture features
of the ensemble objects occurs within the PPA (Cant
& Xu, 2012; Cant & Xu, 2017), and the processing of
each is not done independently of each other (Cant,
Sun, & Xu, 2015). In addition, the PPA has also been
shown to be sensitive to changes in the ratio of two
different objects composing an ensemble, where global
estimates of the object ensemble’s average shape and
texture vary (Cant & Xu, 2015). In contrast, the lateral
occipital cortex (LOC) has been shown to be sensitive to
changes that do not vary the object ensemble’s average
shape and texture, such as the spatial arrangement
of objects within ensembles (with the number and
type of ensemble elements remaining fixed; Cant &
Xu, 2015), or changes in the density of objects in
ensembles (without changing the ratio; Cant & Xu,
2015). Consequently, these studies suggest that the PPA
may play a key role in extracting summary statistics
for global visual information, while the LOC may be
playing a role in coding local visual elements.

In addition to global ensemble features, PPA is
heavily involved in scene processing and is sensitive to a
wide range of global scene features. For example, PPA
is sensitive to textural patterns within a scene (Lowe,
Gallivan, Ferber, & Cant, 2016), the layout or geometry
of space (Epstein, Graham, &Downing, 2003), a scene’s
spatial boundary (i.e., openness/closedness; Park,
Brady, Greene, & Oliva, 2011), non-scene landmark
objects like buildings (Bastin et al., 2013; Cate, Goodale,
& Köhler, 2011), the object content of a scene (Harel,
Kravitz, & Baker, 2013), the category a scene belongs
to (artificial/natural; Walther, Caddigan, Fei-Fei, &
Beck, 2009), the contour junction statistics of scenes
(Choo & Walther, 2016), and the spatial frequency
content of scenes (Berman, Golomb, & Walther, 2017),
as well as apparent scene temperature (i.e., how hot
or cold a scene looks) and sound level (i.e., how quiet
or noisy a scene appears; Jung & Walther, 2021).
Similar to ensemble perception, global scene features
are extracted rapidly (as fast as 100 ms; Oliva, 2005;
Potter & Faulconer, 1975), circumventing limitations of
attention and working memory (McNair, Goodbourn,
Shone, & Harris, 2017; Oliva, 2005). These findings
as a whole indicate that PPA is incredibly versatile in
rapidly extracting and compressing global statistical
visual information, as evidenced by the shared neural
mechanisms across ensemble and scene perception in
parahippocampal cortex (Cant & Xu, 2012; Cant & Xu,
2015; Cant & Xu, 2017; Cant & Xu, 2020).

Traditionally, the neural mechanisms underlying
global visual scene processing (e.g., in the PPA) was
assumed to follow the “coarse-to-fine hypothesis”
(Navon, 1977). This theory suggests that low spatial
frequency (LSF) scene content (i.e., the coarser
gradients and textural patterns in scenes) is processed
first to provide a rough estimate of scene “gist”,
which is then followed by the processing of high
spatial frequency (HSF) content (i.e., the detailed
borders, contours and edges in scenes) to provide finer
details (Schyns & Oliva, 1997). Although elegant in its
simplicity, the coarse-to-fine hypothesis received mixed
support in the neuroimaging literature, particularly
in PPA. For example, some studies suggested PPA
activates more strongly to LSF than HSF content
(Peyrin, Baciu, Segebarth, & Marendaz, 2004), while
others demonstrated that PPA preferentially processes
HSF information (Rajimehr, Devaney, Bilenko, Young,
& Tootell, 2011; Zeidman, Mullally, Schwarzkopf, &
Maguire, 2012).

A modern theory that can help explain these
discrepant results, as well as the versatility of
scene-processing mechanisms, is the principle of feature
diagnosticity. This theory argues that visual features
that are most informative to perform a given task
are preferentially used by the visual system, given
the available visual information. This is achieved
through an interplay of bottom-up sensory inputs and
top-down expectations shaped by prior knowledge
(Greene & Oliva, 2009a; Oliva & Schyns, 1997).
Specifically, bottom-up processing in early visual areas
(V1/V2) detects low-level cues like spatial frequencies
and edge statistics (Hubel & Wiesel, 1968), while
top-down processing in scene-selective regions (e.g.,
PPA, the occipital place area (OPA), the retrosplenial
complex (RSC)) integrates these low-level cues with
expectations that bias feature selection (Bar, 2004;
Dilks, Julian, Paunov, & Kanwisher, 2013; Miller,
Vedder, Law, & Smith, 2014; Park et al., 2011). For
example, when evaluating scene content (i.e., how
natural or manufactured a scene appears), informative
bottom-up cues for natural scenes (e.g., forests, beaches,
etc.) include LSFs and complex, irregular textures,
whereas informative low-level cues for manufactured
scenes (e.g., offices, cities) include HSFs and cardinal
edge orientations (Geisler, 2008; Greene & Oliva,
2009a; Walther & Shen, 2014). Top-down expectations
(shaped by lifelong statistical learning mechanisms
that track correlations between particular visual cues
and certain environmental settings; Geisler, 2008) that
anticipate more textured natural scenes and more
structured manufactured settings, contribute to scene
processing by prioritizing these low-level visual cues
when evaluating scene naturalness (Bar, 2004; Greene
& Oliva, 2009a). These features become diagnostic
to completing the task at hand, allowing for rapid
global visual processing. Indeed, neuroimaging findings
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directly support the theory of feature diagnosticity for
scene processing. For example, Lowe and colleagues
(2016) found that during scene classification, the PPA is
more sensitive to variations in scene layout than texture
in manufactured scenes, but is equally sensitive to
variations in spatial layout and texture in natural scenes.

When evaluating another global scene property,
spatial boundary (i.e., how open or closed a scene
appears), informative bottom-up cues involve
smooth spatial frequency gradients and sparse edge
content in open scenes (e.g., plains), and abrupt
high-frequency transitions and dense edge structures
(e.g., T-junctions) in closed scenes (e.g., caves) (Park
et al., 2011; Walther & Shen, 2014). According to
the principle of feature diagnosticity, our top-down
expectations of vast horizons for open scenes and
confined spaces for closed scenes, processed in PPA,
OPA, and RSC, serve to prioritize these low-level
cues when evaluating scene openness (Dilks et al.,
2013; Miller et al., 2014; Park et al., 2011). By using
top-down expectations to prioritize the processing of
certain diagnostic features, the visual system is thus
able to manage the computational load associated
with scene processing (Oliva, 2005; Oliva & Schyns,
1997).

Although the principle of feature diagnosticity
has been explored for its role in the recognition of
single scenes (Harel et al., 2020; Lowe et al., 2016),
its role in processing multiple scenes (i.e., scene
ensembles) remains unexamined. Scene ensemble
perception has strong ecological implications, as the
brain integrates multiple scenes both temporally and
spatially in real-world contexts (Epstein & Baker,
2019). The human brain has been shown to robustly
anticipate scene information as we navigate through
different environments (Shikauchi & Ishii, 2016).
During navigation, different scenes are encountered
sequentially, such as transitioning from an open natural
city park to a closed manufactured urban landscape.
As we move through different environments, the
visual system encodes average changes in diagnostic
low-level features comprising scene content and spatial
boundaries (Epstein & Baker, 2019; Shikauchi & Ishii,
2016). The average scene features extracted provide
rapid yet accurate information to be integrated in real
time, even at the expense of detailed information about
single isolated elements (Alvarez, 2011; Haberman &
Whitney, 2009; Whitney & Yamanashi Leib, 2018). This
allows for the generation of more precise expectations of
upcoming environments, which can in turn can facilitate
later scene gist extraction (Albrecht & Scholl, 2010;
Epstein & Baker, 2019; McLean, Nuthmann, Renoult,
& Malcolm, 2023). We also encounter scenarios in daily
life where multiple scenes are processed simultaneously,
such as in contexts when viewing multiple camera feeds
on several security monitors or browsing thumbnail
images in online search results (e.g., evaluating natural

vs. urban scenes on Google Images). In these scenarios,
the extraction of average diagnostic features aids rapid
judgments about their relevance or context (Greene &
Oliva, 2009a; Tiurina, Markov, Whitney, & Pascucci,
2024). Interestingly, both temporal (i.e., multiple
sequentially presented items) and spatial (i.e., multiple
simultaneously presented items) ensemble processing
rely on similar mechanisms, because the brain efficiently
averages visual features across time or space with
comparable precision (Haberman & Whitney, 2009;
Haberman & Whitney, 2011; Khayat, Pavlovskaya, &
Hochstein, 2024). By preferentially processing (e.g.,
attending to) the most diagnostic information relevant
for navigation and rapid decision-making processes, the
visual system is able to minimize cognitive load, while
achieving robust, real-time analysis in complex, dynamic
environments (Barhorst-Cates, Rand, & Creem-Regehr,
2020; Epstein & Baker, 2019; Greene & Oliva,
2009a).

Furthermore, individual scene processing is likely
subserved at least partially by global ensemble
statistical mechanisms, lending support to the idea that
ensembles of multiple scenes may also be efficiently
processed by these mechanisms. Indeed, Brady,
Shafer-Skelton, and Alvarez (2017) showed that one’s
ability to recognize individual scenes was positively
correlated with one’s ability to detect global changes
in spatial ensembles composed of Gabor elements
(i.e., a global ensemble texture), but not with the
ability to detect changes in object-based summary
statistics. These findings suggest that the processing
of global ensemble textures likely contributes to
individual scene perception. This is consistent with
findings that cortical regions that are sensitive to
processing scenes have also been implicated in the
processing of textural features of ensembles (Cant &
Xu, 2017). Given this, it stands to reason that the global
ensemble statistical mechanisms employed during
single scene perception could extend to ensembles of
multiple scenes. If this is the case, we posit that the
principle of feature diagnosticity would underlie this
ability.

Indeed, the principle of feature diagnosticity
provides a framework for the rapid encoding of
statistical information across multiple scenes, despite
their abundant visual information. However, the visual
complexity of scene ensembles may still pose unique
challenges to ensemble processing not seen with other
stimuli. When using visual stimuli like objects or faces,
ensemble perception remains stable with larger set
sizes (see Alvarez, 2011) due to efficient averaging of
low-level features (e.g., size (Chong & Treisman, 2003),
orientation (Parkes et al., 2001), and facial expression
(Haberman & Whitney, 2009)). However, averaging
scene information requires the integration of high-level
features, such as scene content, spatial boundaries,
and scene category information, which impose greater
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computational demands on the visual system (Cichy
et al., 2016; Greene & Oliva, 2009a; Oliva & Torralba,
2006). Consistent with this, Park, Chun, and Johnson
(2010) found that the PPA exhibits working memory
capacity limitations, with significantly reduced BOLD
activation and decoding accuracy when maintaining
two scene views compared to one under high cognitive
load, indicating a bottleneck in processing multiple
scenes simultaneously. Moreover, the OPA primarily
processes dynamic, local visual information relevant
for moment–to–moment navigation within individual
scenes and does not integrate broader spatial context
across multiple scenes (Kamps, Julian, Kubilius,
Kanwisher, & Dilks, 2016). In contrast, the RSC
supports higher–order spatial memory and map–based
navigation requiring sustained exposure or temporal
integration, constraining its ability to rapidly integrate
spatial context across multiple scenes when presented
briefly (Alexander, Place, Starrett, Chrastil, & Nitz,
2023). With all this in mind, when encoding scene
ensembles, the increased cognitive load could hinder
task performance as set size increases, as attentional
and neural resources have difficulty extracting multiple
features across multiple scenes (Cant & Xu, 2012;
Greene & Oliva, 2009a). In contrast, by prioritizing
diagnostic features when processing multiple scenes,
ensemble-processing mechanisms may be flexible
enough to circumvent these aforementioned cognitive
limitations and thereby maintain task performance as
set-size increases, even across complex scene stimuli.

Moving beyond low-level features of objects,
ensemble processing has been shown to be highly
flexible, as high-level features such as average crowd
animacy and average economic value can be extracted
from groups of objects (Yamanashi Leib et al.,
2016;Yamanashi Leib, Chang, Xia, Peng, & Whitney,
2020). This establishes that summary statistics can be
formed from abstract object features, but it is unclear
if this ability extends to the integration of multiple
features from multidimensional environments (i.e.,
containing multiple objects in spatial relation to each
other within a particular setting). With this in mind,
the goal of the current study was to explore potential
limits of ensemble perception by using stimuli that
are more visually complex than those used in previous
studies. That is, we used ensembles of real-world scenes
instead of objects and faces, and investigated whether
the principle of feature diagnosticity would mediate
this type of ensemble processing, by prioritizing
diagnostic low-level features consistent with top-down
expectations. Across five experiments, we asked
participants to extract estimates of average scene
content (i.e., perceived naturalness/manufacturedness),
spatial boundary (i.e., perceived openness/closedness),
and orientation (i.e., rotated scenes) from scene
ensembles. As stated previously, diagnostic features
for extracting naturalness and openness include LSF

information and complex, irregular textures for natural
scenes (e.g., forests, beaches) and smooth spatial
frequency gradients and sparse edge content for open
scenes (e.g., plains) (Bar, 2004; Brady & Shafer-Skelton,
2017; Greene & Oliva, 2009a; Oliva, Park, & Konkle,
2011; Walther & Shen, 2014). Given the presence of
these types of diagnostic visual features in our scene
stimuli, we predicted that observers would be able to
rapidly, accurately, and globally extract average scene
content and spatial boundary from scene ensembles due
to the principle of features diagnosticity (i.e., because
they align with top-down expectations of textured
natural environments and expansive layouts).

There are also visual features that are diagnostic to
scene orientation processing, as orientation-selective
neurons in early visual cortex extract edge orientations
that provide critical information for interpreting spatial
layout and scene structure (Hubel & Wiesel, 1968). In
typically encountered upright scenes, this comes in the
form of cardinal (i.e., horizontal and vertical) edges
such as horizons and building outlines. However, in the
present study we used rotated scenes, where oblique
edges are instead more informative to determine scene
orientation (Girshick, Landy, & Simoncelli, 2011;
Hubel &Wiesel, 1968; Nasr & Tootell, 2012; Oliva et al.,
2011; Shapley & Tolhurst, 1973). This goes against
the top-down expectation of using cardinal edges to
extract scene orientation. By rotating the scenes, we
created a mismatch between the informative oblique
edge orientation cues in our scene ensembles and the
top-down expectations of prioritizing cardinal edges
(Bar, 2004; Charlton, Młynarski, Bai, Hermundstad,
& Goris, 2023; Girshick et al., 2011; Greene & Oliva,
2009a). Because of this mismatch, the oblique edges
could not be used as diagnostic cues to complete the
task, and so we predicted participants would have
difficulty extracting average orientation from our scene
ensembles.

Finally, we also tested whether these ensemble
processing abilities can be explained by appealing
to working memory resources. Previous findings
demonstrate that ensemble perception does not
require single item identification and can occur at
a temporal resolution at or beyond the temporal
resolution of individual object recognition (Corbett
& Oriet, 2011; Haberman & Whitney, 2009), This
suggests that ensemble perception operates efficiently by
bypassing the limitations inherent to working memory.
While some prior studies have considered potential
interactions between working memory and ensemble
perception (Knox, Pratt, & Cant, 2024; Williams, Pratt,
Ferber, & Cant, 2021), none have directly examined
interactions between these mechanisms when using
complex scene ensembles. Based on these previous
results, we predict that average scene content and spatial
boundary will be extracted without reliance on working
memory resources.
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General methods

Participants

Fifty six participants (eight males; 48 females; 51
right-handed; five left-handed; mean age = 18.91 years;
age range, 18–22 years) participated in Experiment 1
(content and spatial boundary ratings of individual
scenes), 55 participants (18 males; 37 females; 50
right-handed; five left-handed; mean age = 18.85 years;
age range, 18–27 years) participated in Experiment 2
(scene ensemble ratings while varying stimulus
duration), 42 participants (18 males; 24 females; 38
right-handed; four left-handed; mean age = 20.69 years;
age range, 18–34 years) participated in Experiment 3
(scene ensemble ratings while measuring working
memory capacity), 49 participants (15 males; 34
females; 45 right-handed; four left-handed; mean
age = 19.65 years; age range, 17–29 years) participated
in Experiment 4 (orientation ratings of individual
scenes), and 61 participants (22 males; 39 females; 56
right-handed; five left-handed; mean age = 19.31 years;
age range = 18–27 years) participated in Experiment 5
(scene ensemble orientation ratings). For participant
exclusions, see “Data Analysis” below. The participants
were all chosen from a pool of undergraduate students
at the University of Toronto Scarborough. Participants
had normal or corrected-to-normal vision and received
course credit for participation. All participants
provided informed consent, and the study was approved
by the University of Toronto Research Ethics Review
Board. Sample sizes (i.e., n = 42–61 across experiments)
were based on prior ensemble perception studies (e.g.,
Haberman & Whitney, 2009, with typical samples
of 10–20 participants) and a formal power analysis
conducted using G*Power 3.1 (Faul, Erdfelder, Lang,
& Buchner, 2007). For our mixed model analysis
(approximated as a repeated measures ANOVA for
power estimation), assuming a medium effect size
(f = 0.20), statistical power of 0.8, and an alpha level of
0.05, power calculations indicated a minimum required
sample size of approximately 36 participants. Because
the sample size in each of our five experiments exceeds
this minimum, we are confident that we have sufficient
statistical sensitivity to detect the expected effects in our
study.

Stimuli and apparatus

We obtained stimuli from the Places Dataset
(http://places.csail.mit.edu/), the SUN database
(https://groups.csail.mit.edu/vision/SUN/), and also
used stimuli from Oliva and colleagues (Xiao, Hays,
Ehinger, Oliva, & Torralba, 2010; Zhou, Lapedriza,
Khosla, Oliva, & Torralba, 2017). The stimuli consisted

of a wide array of scenes that varied greatly in both
scene content (how natural or manufactured a scene
appeared) and spatial boundary (how open or closed a
scene appeared), and were presented against a white
background. The types of stimuli included—but were
not limited to—beaches, highways, city buildings,
forests, and caves (see Figure 1). All stimuli were
size-adjusted using Adobe Photoshop CC 2015 (Adobe
Systems Incorporated, San Jose, CA, USA) and were
presented using the Psychophysics Toolbox 3 (Brainard,
1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997)
in MATLAB. Data analysis was conducted using
R software (R Core Team, 2022) and MATLAB.
Participants were tested in a darkened room and had
their head position secured using a headrest that was 32
cm from the front of the table and 40 cm from a CRT
monitor (1920 × 1080 pixels, screen refresh rate: 60 Hz).
Responses for scene content and spatial boundary
ratings were collected through keyboard input, and
responses for orientation were collected by mouse input
(see Procedure).

In Experiments 1–3 (rating scene content and
spatial boundary), each individual scene was sized
as a 256 × 256-pixel square. In Experiments 4 and
5 (rating orientation), the individual scenes used in
Experiments 1–3 were cut out of the square images
by a 256-pixel circle superimposed and centered at
the center of the square, to form 256-pixel diameter
circular scenes (as if looking at the square individual
scenes through a pinhole, see Figure 1). These scenes
were cut into circles so that the rectangular frame
edges could not act as external orientation cues during
the scene orientation rating task (Anderson, Bischof,
Foulsham, & Kingstone, 2020; May & Zhaoping, 2016).
In Experiments 1 and 4, the individual scenes were
positioned at the center of the screen. In Experiments 2,
3 and 5, the set of individual whole scenes to form an
ensemble or subset of an ensemble was arranged on a
768 × 512-pixel grid, with the stimuli arranged in three
columns by two rows (horizontally subtends 67.7°,
vertically subtends 43.3°; see Figures 2 and 3). The
location of each stimulus within this grid was randomly
selected on each trial.

In Experiment 1, 313 individual scenes were rated for
both their scene content and spatial boundary (See Data
Analysis; mean, minimum and maximum luminance
across pixels: 113.8, 30.7, and 184.6 respectively; values
are unitless intensity levels from a uint8 grayscale image,
where the pixel luminance ranges from 0 [black] to 255
[white]). After the individual ratings in Experiment 1,
four scene ensembles with a set size of six were
generated for Experiments 2 and 3 (i.e., whole scene
ensembles), wherein participants provided separate
ratings of average scene content and spatial boundary
for each ensemble, for all possible combinations of
one-, two-, four-, and six-item presentations (see Data
Analysis). In Experiment 4, the same 313 images (plus
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Figure 1. Stimuli used in the study. (A) displays examples of scene stimuli presented in Experiments 1–3, illustrating a wide range of
variations in scene content (manufactured vs. natural) and spatial boundary (open vs. closed). (B) shows the same stimuli converted
into circular scenes at various orientations for Experiments 4 and 5.

215 additional scene stimuli) were modified into circular
scenes and were then rotated at random degrees so that
participants could give orientation responses (see Data
Analysis; mean, minimum and maximum luminance
across pixels: 119.1, 21.7, and 195.6 respectively). After
selecting the stimuli in Experiment 4 that had the most
reliable ratings of orientation (see Data Analysis),
eight scene ensembles of set size six were generated for
Experiment 5, in which participants provided ratings of
average orientation.

Procedure

Experiment 1
The procedure for Experiment 1 was adapted from

Yamanashi Leib et al. (2016) (also see Alwis and
Haberman (2020)). Participants were asked to provide
ratings of scene content and spatial boundary for 313
individual scenes in two separate blocks. Ratings were
performed on an 11-point integer-based Likert scale,
ranging from −5 to 5. The order of the type of rating
made, as well as the magnitude of features along the
Likert scale (i.e., −5 representing highly manufactured
scenes and 5 representing highly natural scenes for
scene content ratings, and −5 being highly closed
and 5 being highly open for spatial boundary ratings)

were counterbalanced between blocks and between
participants. The presentation of stimuli within a block
was randomized until all 313 images were rated for a
given scene feature (313 × 2 = 626 total ratings). Stimuli
were presented for one second and were then followed
by the presentation of the Likert scale on the screen
prompting a rating for a scene feature (see Figure 2).
Participants had up to 10 seconds to respond, before
the experiment moved on to the next trial. The stimuli
were separated by an interstimulus interval (ISI),
indicated by a fixation point at the center of the screen
that lasted for 500 ms. This trial structure was repeated
until all stimuli within a block were presented, and
participants were given up to a one-minute break every
40 trials.

Experiment 2
In Experiment 2, four scene ensembles with a

set size of six were generated and made up of six
pseudorandomly drawn individual scenes (obtained
from Experiment 1 without repetition) to design
ensembles that required global visual processing to
obtain the ensemble average (see Data Analysis below).
In addition to making either average scene content
or spatial boundary ratings on the whole 6-scene
ensemble, participants also rated subsets of either
one, two, or four scenes randomly extracted from the
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Figure 2. Experimental design for a single rating trial in Experiments 1, 2, and 3. At the beginning of every trial, an ISI fixation cross
was presented for 0.5 second. In Experiment 1, the ISI was followed by a single scene image presented in the center of the screen for
1 second. In Experiment 2 and Experiment 3’s rating trials, the ISI was followed by a one-, two-, four-, or six-item scene ensemble
arranged within a 512 × 768 pixel grid. In Experiment 2, the stimulus presentation was for variable amounts of time (0.125 second,
0.250 second, 0.500 second, or 1 second), whereas the stimulus presentation time was 0.250 second in Experiment 3. For
Experiments 2 and 3, all stimulus presentations were followed by a subsequent backward mask for 0.25 second. After the stimulus
presentation (and masking where applicable), participants were asked to make a response within 10 seconds. For rating trial
responses in Experiments 1, 2, and 3, participants were asked to rate either the single (Experiment 1) or average scene content (i.e.,
natural vs. manufactured) or spatial boundary (i.e., open vs. closed) (Experiments 2 and 3) of the scene(s) presented on a Likert scale
ranging from −5 to 5.

whole set scene ensembles. The locations of the items
presented were always random within a 3-column ×
2-row item grid located at the center of the screen
(see Figure 2). All possible combinations for each
subset were displayed, leading to six, 15, 15, and one
total combination(s) for set sizes of one, two, four, and
six items, respectively. To balance the number of trials
for each subset, one-item subsets were repeated twice
and six-item subsets were repeated 12 times, leading to
12, 15, 15, and 12 trials for the one-, two-, four-, and
six-item subsets, respectively. All possible combinations
of one-, two-, four-, and six-item presentations for each
ensemble were shown to participants, with repetitions,
to maintain a similar number of datapoints across
set-sizes and to reduce between-subjects noise in the

data. Any potential effects of repetition were accounted
for in the mixed model used for analysis (see Data
Analysis). The stimulus duration was varied between
125, 250, 500, or 1000 ms between blocks, and the
presentation of stimuli were followed by a backward
mask that lasted 250 ms (see Figure 2). This led to
a total of 2 (scene feature rated) × 4 (number of
ensembles) × 54 (total number of set-size combinations
presented) x 4 (stimulus duration) = 1728 trials in an
experimental session. Each feature rating by stimulus
duration combination was presented in separate blocks
throughout the experiment (4 × 2 = 8 blocks in total,
with 216 trials in each block and up to a one-minute
break every 40 trials), with the whole set and subset
conditions, as well as the ensembles presented within
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Figure 3. Experimental design for a single memory trial in Experiment 3. At the beginning of every trial, an ISI fixation cross was
presented for 0.5 second. The fixation cross was followed by six 256 × 256 pixel scene images arranged within a 512 × 768 pixel grid
for 0.250 second. After the stimulus presentation and a subsequent backward mask for 0.250 second, one of the six images was
displayed again along with an image that was not previously presented. Participants had up to 10 seconds to indicate which of the
two images they had seen.

each rating condition, being randomly presented
within each block. The order of the blocks was
randomized across participants. The temporal structure
of each trial is otherwise the same as that described in
Experiment 1.

Experiment 3
The same 4 scene ensembles used in Experiment 2

were again in Experiment 3, and the experiments were
identical except for two changes. The first change
was that there was only one stimulus duration of
250 ms for scene feature rating trials. The second
change was, in addition to having scene feature rating
trials, an additional block of memory trials was
added. In the memory trials, participants performed
a two-alternative forced choice task to measure their
working memory capacity for the items presented
in the ensembles (see Figure 3). At the beginning
of every trial, an ISI of 0.5 second was followed
by a six-item whole-scene ensemble for 250 ms (no
subsets were shown for the memory trials). After the
stimulus presentation and a subsequent backward
mask for 250 ms, one of the six images presented
was displayed (i.e., the target) along with an image
that was not presented (i.e., the lure). Participants
had up to 10 seconds to indicate (via the left or
right arrow key on the keyboard) which of the two
images they had seen previously, and had up to a
1-minute break every 40 trials. Each single stimulus
within all four scene ensembles was selected across
trials four times, leading to 4 × 6 × 4 = 96 memory
trials.

Experiments 4 and 5
The procedures for Experiments 4 and 5 are identical

to the procedures of Experiments 1 and 3, respectively,
except for a few main changes. First, instead of using
square scenes, circular scenes were used (see Figure 1).
Secondly, in Experiment 4, 215 additional scene
stimuli were added to the existing 313 stimuli used in
Experiment 1, for a total of 528 stimuli. Third, in report
trials participants reported the average orientation of
the scene(s) on the screen, by moving the mouse to
rotate an arrow on the screen and then confirming the
correct orientation with a mouse click.

Data analysis

Determining individual scene content and spatial
boundary values

For Experiment 1 (rating individual scenes), in order
determine the average scene content or spatial boundary
rating for each item across participants, ratings that
were more than 1.5 times the interquartile range (IQR)
above or below the third and first quartile rating value
were excluded. After adjusting for counterbalancing
done during the experiment, spatial boundary ratings
had −5 representing very closed scenes, 5 representing
very open scenes, and 0 representing equally open
and closed scenes; while scene content ratings had −5
representing highly manufactured scenes, 5 representing
highly natural scenes, and 0 representing equally
manufactured and natural scenes. We then wanted to
organize individual scene stimuli based on both their
scene content and spatial boundary ratings. For each

Downloaded from jov.arvojournals.org on 01/21/2026



Journal of Vision (2026) 26(1):3, 1–31 Tharmaratnam, Haberman, & Cant 9

scene feature, 5 bin value boundaries were created: −5
to −3, −3 to −1, −1 to 1, 1 to 3, and 3 to 5. Across
both features (scene content and spatial boundary),
these boundaries led to 5 × 5 = 25 unique bins that
individual scene content and spatial boundary values
could occupy. These bins were created to later assemble
scene ensembles that were uncorrelated in their average
scene content and spatial boundary values. To confirm
interrater reliability, a two-way mixed intraclass
correlation coefficient was calculated for absolute
agreement between every possible pair of participants,
for both the scene content and the spatial boundary
stimulus sets (McGraw &Wong, 1996).

Composing scene content and spatial boundary scene
ensembles

To compose the scene ensembles for Experiments 2
and 3, images were drawn pseudorandomly to form
ensembles with skewed distributions of individual
scene content and spatial boundary values. The four
ensembles were targeted to have a mean scene content
and spatial boundary value of 3.5 and 3.5, −3.5 and
3.5, 3.5 and −3.5, and −3.5 and −3.5, respectively.
These mean scene feature values for each ensemble were
chosen so that across ensembles, mean scene content
and spatial boundary values would be uncorrelated
with each other. Skewed distributions of scene feature
values within an ensemble were used (instead of using
a uniform or normal distribution), so that it would
be harder to distinguish the ensemble’s average scene
feature value by allocating attention on only a subset
of the items. For instance, imagine a scenario where
a participant is presented with a scene ensemble
containing 6 images that were randomly selected
from a uniform distribution, with scene naturalness
values of −5, −3, −1, 1, 3, and 5, yielding an average
naturalness value of 0. If the participant used a
subsampling strategy when presented with all six
scenes, they might pay attention to two of the scenes
with a value of −5 and 5, for example, and arrive at
an average of 0 (i.e., the same value as the average
for all six scenes). This highlights an issue with using
uniform or normal distributions in ensemble tasks.
That is, due to the symmetry of these distributions,
the averages of randomly drawn smaller samples are
prone to regression to the mean, which allows for
responses made using a subsampling strategy to be
mathematically similar in effectiveness compared with
a global integration strategy (i.e. generating an average
using all available items). Consequently, this would
render the results difficult to interpret with regard
to ensemble integration. In contrast, using a skewed
distribution (e.g., values of −5, 0, 0, 3, 4, and 5) guards
against this possibility by making it less likely that the
average of a subset approximates the average of the

entire set, and thereby encourages the global integration
of all items to complete the task.

To make the skewed distributions, for each ensemble,
we selected one third of the scenes from bins that
most closely matched the target scene feature values,
and then randomly drew scenes from all bins for the
other two thirds. To verify that this led to individual
scene values with high skew (promoting global
attention to the ensemble), a simulation of ideal
observers was conducted for scene content and spatial
boundary ratings (see Supplemental Materials and
Figures). Pictures with the lowest standard deviation
in their scene feature ratings were selected from bins
first, and were not selected more than once. For
Experiment 3, working memory capacity was calculated
using the following equation: Working Memory
Capacity = (%Correct − 0.5)*2*6 (Yamanashi Leib et al.,
2016).

Validating scenes that had reliable orientations
Experiment 4 was performed in the same manner

as Experiment 1 except circular scenes were presented
instead of square scenes. The purpose of Experiment 4
was to assess how difficult it was for participants
to report scene orientation and from this to derive
a stimulus set of scenes that could be used in
Experiment 5. Specifically, we wanted to examine how
reliably participants could perceive the orientation
of individual scenes that were rotated through 360°
(e.g., if a landscape was made up of only sand dunes
without any horizon, orientation information would
not be easily discernable and thus participants would
likely not reliably perceive its orientation). The scenes
were placed behind a circular aperture so that the
bounding edges of the original rectangular stimulus
could not be used to ascertain the correct orientation.
In Experiment 4 each of the individual circular scenes
was presented at a random orientation through 360°
on each trial. Next, an error measurement (which will
be called “orientation difficulty”) was calculated for
each stimulus by subtracting the absolute difference
between the participants’ reported orientation and
the correct orientation. The higher the orientation
difficulty for a stimulus, the harder it is for participants
to rate its orientation. These values were averaged
for each stimulus across participants to obtain an
overall orientation difficulty value for each stimulus. To
confirm interrater reliability (similar to Experiment 1),
a two-way mixed intraclass correlation coefficient
was calculated for absolute agreement between every
possible pair of participants (McGraw & Wong, 1996)
across all stimuli. After this, 100 stimuli with the lowest
orientation difficulty values were selected out of the
entire pool of circular stimuli (orientation difficulty
range, 12.97°–19.24°) to generate scene ensembles for
Experiment 5.
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Composing scene orientation ensembles
After validating the scene stimuli based on

orientation difficulty ratings in Experiment 4, eight
circular scene ensembles of set-size six were formed
for Experiment 5, with each of the eight ensembles
having a unique target mean orientation with a range
of 0° to 360°, while avoiding cardinal directions. To
make skewed distributions of angles, five bins of 40°
were created around the target mean angle (e.g., if the
target mean angle was 100°, five bins would be created
of angles 0°–40°, 41°–80°, 81°–120°, 121°–160°, and
161°–200°). Next, for each ensemble, one stimulus was
drawn from each bin, followed by an extra stimulus
drawn from either the second or fourth bin, for a total of
six different orientations. The six individual orientations
per ensemble were generated to have a minimum skew
of 0.65 and were validated via a simulation analysis
to ensure that the average orientation could only be
obtained by attending globally to all orientations (see
Supplementary Materials and Figures). The mean
orientation for each ensemble was calculated as the
orientation of the mean resultant vector of all six
individual orientations combined, with each orientation
being represented as a unit vector.

Calculating task performance metrics
In Experiments 2, 3, and 5 (scene ensemble rating

experiments), two types of Pearson correlations
(log-transformed into Fisher Z values) were calculated
for each combination of scene rating, set size, and
presentation time (when applicable), separately
for each participant. The first type of Pearson
correlation—which will be referred to from this point
on as the task performance metric—examined the
relationship between a participant’s average rating
of the ensemble for each of the ensemble set-size
conditions (subsets: one, two, and four items; whole
set: six items), and the predicted average rating of
what was presented on the screen. For scene content
and spatial boundary ratings, this predicted value was
formed by taking the mathematical average of the
ratings of these features for individual scenes presented
in Experiment 1. For orientation ratings, this predicted
value was generated by taking the mathematical average
of the orientation responses for individual scenes made
in Experiment 4 (alpha criterion (α) equal to 0.05). For
example, the average spatial boundary estimate given
by a participant for a four-item ensemble would be
correlated with what the mathematical average spatial
boundary value should be based on ratings of the
same four individual scenes made by a separate group
of participants in Experiment 1. The purpose of the
task performance metric was to assess how difficult
it was for participants to generate average ensemble
ratings, separately for each set-size. In other words,

how close is the participants response for each set size
to the predicted average value for that particular set
size? If task performance is independent of set-size,
then the correlations should remain constant across
set-sizes. However, if task performance worsens with
increased ensemble set size, then the correlations would
significantly decrease monotonically with increased
set-size. This procedure yielded four correlations for
each combination of stimulus duration and scene rating
for each participant (4 × 4 × 2 = 32 total correlations
for each participant in Experiment 2, and 4 × 1 ×
2 = 8 correlations for each participant in Experiment 3,
and 4 × 1 × 1 = 4 correlations for each participant in
Experiment 5).

Calculating ensemble integration metrics
The second type of correlation—which will be

referred to from this point on as the ensemble
integration metric—examined the relationship between
a participant’s average rating of the ensemble for each
of the ensemble set-size conditions (subsets: one,
two, and four items; whole set: six items), and the
predicted average rating of the original six-item whole
set ensemble that each subset was constructed from.
The predicted average rating of the original six-item
whole set was calculated by averaging the individual
scene ratings collected in an independent group of
participants (Experiment 1: scene content and spatial
boundary ratings; Experiment 4: scene orientation
reports; α = 0.05). The purpose of the ensemble
integration metric was to assess how much individual
scene information is integrated into participants’
ratings of average scene content, spatial boundary, and
orientation. On one-item subset trials, if we assume
that participants are performing the task accurately
and that there is enough skew and variance within
the whole-set ensemble’s individual values, then we
expect that one-item subset ratings would be only
weakly correlated with the predicted average ratings
of the entire six-item whole-set ensemble. In other
words, if a participant is only presented with one out of
the six scenes that makes up the whole set ensemble,
and if we assume a participant needs all six items to
obtain the six-item average, then they would have no
way of providing an accurate rating similar to the
6-item whole set average based on seeing only one
out of the six images. However, as we increase the
number of items seen to two, four, and finally to six,
we expect the ensemble integration metric to increase
monotonically, since participants would progressively
see more visual information that can be used to
approximate the true value of the six-item average
(Yamanashi Leib et al., 2016). This procedure yielded
the same number of correlations as described for the
task performance metric above (Haberman & Whitney,
2010).
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Mixed model analyses
For each rating, set-size, and presentation time, mixed

model analyses were run across participants (α = 0.05),
with ensemble set-size and stimulus repetition (and their
interaction) predicting Fisher Z values (either the task
performance metric or the ensemble integration metric),
with a random intercept for subjects run, and random
slopes for set-size and repetitions for each subject run.
In addition, in Experiment 2, data across presentation
times was collapsed, and presentation times (and their
interactions) were added as additional factors for
mixed model analyses predicting task performance and
ensemble integration metrics.

Scene content and spatial boundary task performance
relationship

For Experiments 2 and 3, to examine the relationship
(i.e., independent or correlated) in task performance
between scene content and spatial boundary, two
types of Pearson correlations were performed. The
first correlation (α = 0.05) examined the relationship
between scene content and spatial boundary ratings for
single scenes. Specifically, we correlated the Fisher Z
values obtained from participants’ task performance
metrics for scene content and spatial boundary ratings
in the 1-item subset condition. The second correlation
(α = 0.05) examined the relationship between the
processing of scene content and spatial boundary for
full ensembles. In this analysis we correlated the Fisher
Z values obtained from participants’ task performance
metrics for scene content and spatial boundary ratings
in the six-item whole set condition. Pearson correlations
had corresponding Bayes factors (BF10) reported
using JASP software (JASP Team, 2025) to verify
nonsignificant effects where appropriate.

Outlier analysis
We assume that participants should be able to provide

similar ratings for single scenes in Experiments 2 and
3 (i.e., in the 1-item subset condition) when compared
to ratings of the same scenes presented individually
in Experiment 1. Similarly, we expected the reports of
orientation in the one-item condition in Experiment 5
to correlate with the individual reports of orientation
made in Experiment 4. To explore this, we correlated
the ratings of single scenes in Experiments 2 and 3 with
the same ratings in Experiment 1, and the reports of
single orientation in Experiment 5 with those made
in Experiment 4, and excluded participants that had
nonsignificant correlations (i.e., a p value higher than
0.05). This led to five, four, and zero participants being
excluded from Experiments 2, 3, and 5, respectively
(resulting Ns = 50, 38, and 61). In addition, after
Fisher Z values for each participant had been calculated

for each set-size (either for the task performance or
ensemble integration metric), Fisher Z values that were
more than 1.5 times the IQR above or below the third
and first quartile Fisher Z value were excluded, and
this was done for each presentation time and scene
feature rated. This led to slightly different sample sizes
for the average Fisher Z value for a given set-size in an
experiment when compared to the overall sample size
for each experiment during mixed model analysis (see
Experiment 2, Experiment 3, and Experiment 5 below).

Experiment 1

In Experiment 1 participants were asked to rate
individual scene stimuli based on their scene content
(i.e., naturalness or manufacturedness) and spatial
boundary (i.e., openness and closedness), to derive
reliable values for each stimulus that can then be used
to calculate predicted average feature values of the
ensembles presented in Experiments 2 and 3. Past
research has shown participants are able to reliably
ascertain differences in both scene content and spatial
boundary within individual scenes (Lowe et al., 2016;
Park et al., 2011), and so it is predicted that there will
be high consistency in the ratings participants give
for these scene features. In order to test the inter-rater
reliability for the participants’ ratings of the stimuli,
two-way mixed intra-class correlation coefficients were
calculated for the 313 stimuli for each scene feature to
assess absolute agreement across participants.

Results and discussion

Excellent absolute agreement across participants was
observed for ratings of both scene content (ICC = 0.99)
and spatial boundary (ICC = 0.99) (Koo & Li, 2016),
demonstrating that participants agreed upon their
ratings of these global scene properties, and that these
scene features were on average rated similarly across
participants. This validated our stimulus set for the
creation of scene ensembles in Experiments 2 and 3.

Experiment 2

It has been shown that people can rapidly (in under
100 ms) visually process both natural and manufactured
objects (Intraub, 1981; Potter & Faulconer, 1975;
Thorpe, Fize, & Marlot, 1996), individual scenes with
varying amounts of naturalness and openness (Banno
& Saiki, 2015; Fei-Fei, Iyer, Koch, & Perona, 2007),
and object ensembles (Yamanashi Leib et al., 2016).
Furthermore, superordinate categories such as scene
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content and openness have been shown to be processed
faster than basic-level categories within scenes (Greene
& Oliva, 2009a; Greene & Oliva, 2009b), suggesting
that both features may be naturally diagnostic to global
visual processes such as scene recognition. Moreover,
summary statistics for high-level ensemble features can
be extracted from groups of objects (Leib, Kosovicheva,
& Whitney, 2016; Yamanashi Leib et al., 2020) and
faces (Haberman & Whitney, 2007), but it is unclear if
this ability extends to groups of highly complex stimuli
that necessitate global visual processing (i.e., scenes).
With all this in mind, Experiment 2 was conducted to
determine if high-level global scene properties such
as average scene content and spatial boundary can be
extracted from scene ensembles, and if so, what the
underlying temporal constraints might be on this ability.

We were also interested in examining how the
extraction of high-level scene ensemble statistics is
affected by variations in the set size of ensembles.
Traditionally, ensemble perception has been shown to
remain stable with increasing set-sizes (Alvarez, 2011),
but most studies use simpler stimuli (e.g., geometric
shapes, objects), and not more complex stimuli such
as groups of scenes. If the previous result is replicated
with scene ensembles, then we expect to see stable task
performance for ratings of average scene content and
spatial boundary as set size increases. Alternatively,
if these computations on complex visual stimuli
are sensitive to manipulations in set size, then we
might see a decrease in task performance as set sizes
increases. It has also been shown that increased stimulus
presentation time can improve visual processing of
both object ensembles and scenes (Fei-Fei et al., 2007;
Yamanashi Leib et al., 2016). Thus we predicted that
task performance metrics would increase as the stimulus
presentation time increased.

Another important aspect to consider is how many
items participants are globally integrating into their
ensemble percepts of average scene content and spatial
boundary, which speaks to the sub-sampling debate
in the ensemble perception literature (i.e., can reliable
summary statistics be derived by incorporating only
a sub-sample of all available items in the display?
Whitney & Yamanashi Leib, 2018). To investigate this,
we examined how ensemble integration metric values
changed with increasing set-sizes. If participants are
only sampling one or two of all available scenes, then we
should see a flatline trend of ensemble integration values
across set sizes. However, if participants incorporate
more scene information as it becomes available, then we
should see ensemble integration values increase with
increasing set-sizes.

Finally, we wanted to explore whether the processing
of scene content and spatial boundary were correlated
for single scenes and scene ensembles. Park et al.
(2011) found that although PPA and LOC are sensitive
to both the content and spatial boundary of single

scenes, LOC was preferentially sensitive to scene
content, and the PPA was preferentially sensitive to
spatial boundaries. This would suggest that both
features may be processed independently of each
other. In contrast, Zhang, Houpt, and Harel (2019)
observed that increasing naturalness in single scenes
was correlated with increased openness, and increasing
manufacturedness was correlated with increased
closedness. This would suggest that both scene features
have a more interactive relationship. We designed the
scene ensembles in Experiments 2 and 3 to have no
mathematical correlation between average scene content
and average spatial boundary (based on Experiment 1
values), so we would be able to observe any interactivity
between scene feature summary statistics if it does
indeed exist.

Results and discussion

Task performance metric
The task performance metrics for all set-sizes and

across all presentation times were significant for both
average scene content (All z > 0.60, r′z > 0.54, p <
0.001,N > 42; see Figure 4) and spatial boundary
ratings (All z > 0.68, r′z > 0.59, p < 0.001,N > 42;
see Figure 5). This suggests that participants were able
to accurately rate the scene ensembles’ average features
at all set-sizes regardless of stimulus presentation time.

In addition to evaluating the task performance at
each set-size for a specific presentation time, we also
wanted to evaluate any trends in task performance
across set-sizes for a given presentation time. The
purpose of this was to determine if task performance
was consistently high across set-sizes, or if it declined
(while still remaining accurate) with increasing set-sizes.
When performing mixed model analyses on scene
content task performance metrics for each presentation
time, set-size was significant at all presentation
times (all t(∼176.75) > 7.08, p < 0.001, β < −0.54),
repetition was significant at all presentation times
(t(∼176.75) > 3.13, p < 0.001, β > 0.76), and the
set-size x repetition interaction was significant
at most presentation times (for 125, 250, and
500 ms, all t(∼175.67) > 3.06, p < 0.001, β < −0.61;
see Figure 4). The set-size x repetition interaction
at 1 s was nonsignificant (t(180) = 0.48, p = 0.63,
β = 0.09). The effects of set-size on ratings of average
scene content can be visualized by inspecting the blue
regression lines with negative slope at each presentation
time in Figure 4.

When performing mixed model analyses on
spatial boundary task performance metrics for each
presentation time, set-size was significant at all
presentation times (All t(∼175) > 5.39, p < 0.001, β <
−0.39), repetition was significant at all presentation
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Figure 4. Scene content results for Experiment 2. Fisher Z values are plotted against set-size for ratings of the average scene content
(i.e., naturalness/manufacturedness) of scene ensembles at 0.125, 0.250, 0.5, and 1 second (from left to right, respectively), for both
the ensemble integration (green) and task performance metrics (blue). Standardized beta values for set-size (β) are provided and
color-coded within each graph, and are visualized as a regression line. ***p < 0.001.

Figure 5. Spatial boundary results for Experiment 2. Fisher Z values are plotted against set-size for ratings of the average spatial
boundary (i.e., openness/closedness) of scene ensembles at 0.125, 0.250, 0.5, and 1 second (from left to right, respectively), for both
the ensemble integration (green) and task performance metrics (blue). Standardized beta values for set-size (β) are provided and
color-coded within each graph, and are visualized as a regression line. ***p < 0.001.

times (t(∼175) > 5.89, p < 0.001, β > 1.16), and the
set-size by repetition interaction was significant at
most presentation times (for 250 ms, 500 ms and
1s, all t(∼175.33) > 2.23, p < 0.001, β < −0.38;
see Figure 5). The set-size x repetition interaction at
125 ms was nonsignificant (t(174) = 1.33, p = 0.18,
β = −0.17). As above, the effects of set-size on ratings

of average spatial boundary ratings can be visualized
by inspecting the blue regression lines with negative
slope at each presentation time in Figure 5. Together,
these results suggest that for ratings of both average
scene content and spatial boundary, increasing set-size
led to a decrease in task performance. This contrasts
with typical findings in the ensemble literature, which
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demonstrate that task performance remains stable
with increasing set-sizes (e.g., Alvarez, 2011). This is
also consistent with literature suggesting that scene
processing is more computationally demanding than
object processing (Cichy, Khosla, Pantazis, Torralba, &
Oliva, 2016; Greene & Oliva, 2009a; Oliva & Torralba,
2006), leading to a greater impact by capacity limits
on its processing (Alexander et al., 2023; Kamps et al.,
2016; Park et al., 2010).

In addition to looking at trends in task performance
at each presentation time separately, we also wanted
to evaluate if differences in presentation time itself
led to changes in task performance. Although there
is extensive literature suggesting that both ensemble
processing and single-scene processing can occur quite
efficiently at very rapid presentation times (Fei-Fei
et al., 2007; Whitney & Yamanashi Leib, 2018), it
is unclear whether this will remain true for scene
ensembles, particularly given the results discussed
above (i.e., decreasing task performance with increasing
set sizes). After conducting a mixed model analysis
for scene content ratings, and collapsing data across
all presentation times, there were significant effects
of set-size (t(715) = 16.67, p < 0.001, β = −1.00),
repetition (t(715) = 9.46, p < 0.001, β = 1.79), the
set-size x presentation time interaction (t(715) = 4.05, p
< 0.001, β = 0.24), the set-size x repetition interaction
(t(715) = 4.87, p < 0.001, β = −0.72), the presentation
time × repetition interaction (t(715) = 3.24, p <
0.01, β = −0.61), and the set-size × presentation
time × repetition interaction (t(715) = 3.63, p <
0.001, β = 0.54). The effect of presentation time was
nonsignificant (t(715) = 1.53 p = 0.13, β = −0.18). A
similar analysis on average spatial boundary ratings
(after collapsing data across all presentation times)
revealed significant effects of set-size (t(708) = 7.24,
p < 0.001, β = −0.44), repetition (t(708) = 7.31,
p < 0.001, β = 1.41), and the set-size x repetition
interaction (t(708) = 2.72, p < 0.001, β = −0.41).
All other variables and interactions in this analysis
were nonsignificant (all t(708) < 1.22, p > 0.22,
β < 0.15).

The set-size × presentation time interaction effect
for scene content is visualized in Figure 4, noted as
the change in the slopes of the blue task performance
metric regression lines across presentation times. For
scene content ratings, these slopes become significantly
less negative with increasing presentation time. In
contrast, the spatial boundary task performance
slopes do not significantly change across presentation
times (see Figure 5). Taken together, this suggests that
for scene content ratings but not spatial boundary
ratings, increasing presentation times seems to enhance
task performance for larger set-sizes and worsens
performance for smaller set-sizes. This aligns with Park
and colleagues’ (2011) findings that scene content and
spatial boundaries are processed distinctly within the

visual system, despite both being extracted via a shared
mechanism that prioritizes low-level diagnostic features
guided by high-level expectations during scene analysis
(Bar, 2004; Lowe et al., 2016; Oliva & Schyns, 1997).

Ensemble integration metric
At each presentation time, we also wanted to

verify that the ensemble whole-set average was being
extracted by globally attending to all six items,
and not just a subset of items. When performing
mixed model analyses on scene content ensemble
integration metrics for each presentation time,
set-size was significant at all presentation times (all
t(∼170) > 4.95, p < 0.001, β > 0.29), repetition
was significant at the 500 ms presentation time
(t(170) = 3.89, p < 0.001, β = −0.41), and the set-size ×
repetition interaction was significant at all presentation
times (all t(∼170) > 3.26, p < 0 − 0.01, β > 0.37;
see Figure 4). All other effects of repetition
across presentation times were nonsignificant (all
t(∼170) < 0.93, p > 0.35, β < 0.14). The effects of
set-size on ratings of average scene content can be
visualized by inspecting the green regression lines with
positive slopes at each presentation time in Figure 4.

When performing mixed model analyses on
spatial boundary ensemble integration metrics for
each presentation time, set-size was significant at
all presentation times (all t(∼173.25) > 3.77, p <
0.001, β > 0.20), repetition was significant at
the 125 and 250 ms presentation times (all
t(∼176.5) > 2.54, p < 0.001, β > 0.37), and the set-size
× repetition interaction was significant at 125 and
500 ms presentation times (all t(∼174) > 2.52, p <
0.001, β > 0.26; see Figure 5). All other effects for
repetition and the set-size x repetition interaction
across presentation times were nonsignificant (all
t(∼172.33) < 1.71, p > 0.09, β < 0.21). The effects of
set-size on ratings of average spatial boundary ratings
can be visualized by inspecting the green regression
lines with positive slopes at each presentation time
in Figure 5. Together, the ensemble integration metric
results for both scene features are consistent with the
findings of Yamanashi Leib and colleagues (2016) for
ensemble lifelikeness ratings, and thus suggest that
participants were able to extract average scene content
and spatial boundary information from scene ensembles
under narrow time constraints as low as 125 ms and
did so by globally integrating all information available
to them as opposed to sub-sampling only one or two
scenes.

As was done in the task performance analysis,
we wanted to evaluate if increased presentation
times affected one’s ability to integrate all 6 items
globally. After conducting a mixed model analysis for
scene content ratings and collapsing data across all
presentation times, there were significant effects of
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set-size (t(688) = 6.81, p < 0.001, β = 0.43), the set-size
× presentation interaction (t(688) = 2.30, p < 0.05,
β = 0.14), and the set-size × repetition interaction
(t(688) = 3.56, p < 0.001, β = 0.54). All other variables
and interactions were nonsignificant (all t(688) <
0.92, p > 0.36, β > −0.12). Similarly, a mixed model
analysis for spatial boundary ratings, after collapsing
data across all presentation times, showed that there
was a significant effect of set-size (t(701) = 5.56, p <
0.001, β = 0.30) and the set-size x presentation time
interaction was also significant (t(701) = 2.06, p <
0.05, β = 0.11). All other variables and interactions
were nonsignificant (all t(701) < 1.91, p > 0.06, β <
0.33). The set-size × presentation time interaction for
scene content and spatial boundary ratings is visualized
in Figures 4 and 5, respectively, as the change in slope
of the green ensemble integration metric regression
lines across presentation times. These results suggest
that for both scene features, as presentation time
increases, the slopes of the ensemble integration metrics
become more positive, indicating that the ensembles
were increasingly processed in a more global manner.
This is consistent with previous work demonstrating
that a longer interval of information accumulation has
a positive effect on both scene and ensemble processing
(Fei-Fei et al., 2007; Roberts, Cant, & Nestor, 2019;
Yamanashi Leib et al., 2016).

Correlations between scene features
There is conflicting evidence as to whether the

processing of scene content and spatial boundary in
individual scenes is done independently of each other
(Park et al., 2011; Zhang et al., 2019). In addition, we
wanted to investigate whether average scene content
and spatial boundary were global features that could be
independently extracted from scene ensembles. Based
on individual scene content and spatial boundary values
from Experiment 1, we generated scene ensembles
that were uncorrelated with each other in terms of
their mathematical average scene content and average
spatial boundary values (See General Methods—Data
Analysis). However, this mathematical independence
between average scene content and spatial boundary
values does not necessarily imply that we would observe
perceptual independence in observers’ responses. To
address both of these issues, at each presentation
time, Pearson correlations between scene content and
spatial boundary ratings for both 1-item and 6-item
presentations were calculated.

When correlating scene content and spatial
boundary ratings for single scenes, stimuli presented
at 125 ms (r(35) = 0.39, p < 0.05, BF10 = 4.44) and
250 ms (r(38) = 0.35, p < 0.01, BF10 = 2.61) showed
significant correlations, suggesting substantial and
anecdotal evidence for the alternative hypothesis,
respectively, based on a Bayesian analysis (Jeffreys,

1961; see Figure 6). Correlations between scene content
and spatial boundary ratings for single scenes presented
for 500 ms and one second were nonsignificant (All
r(∼42) < 0.24, p > 0.13). When correlating scene
content and spatial boundary ratings for six-item
scene ensembles, stimuli presented at 250 ms showed
a significant correlation (r(40) = 0.38, p < 0.05,
BF10 = 3.98), with the Bayes Factor suggesting
substantial evidence for the alternative hypothesis
(Jeffreys, 1961; see Figure 6). In contrast, correlations
between scene features for 6-item ensembles presented
at 125 ms, 500 ms and 1 s were all nonsignificant (All
r(∼42.66) < 0.21, p > 0.19).

These results demonstrate that at shorter presentation
times, scene content ratings were correlated with spatial
boundary ratings of single scenes (i.e., increasing
naturalness was associated with increased openness,
and increasing manufacturedness was associated
with increased closedness). This is consistent with
the findings of Zhang and colleagues (2019), who
also observed a correlation between scene content
and spatial boundary ratings for single scenes. In
contrast, the six-item scene ensembles, which were
generated to have no correlation between average scene
content and spatial boundary values across ensemble
stimuli (see General Methods—Data Analysis), did
not show a consistent correlation between observers’
percepts of average scene content and spatial boundary
across most presentation times. This indicates that
summary statistics for average scene content and spatial
boundary can be perceptually extracted independently
of each other, even if there are associations between
the processing of both features in single scenes. The
one exception to this was the significant correlation
at 250 ms for scene ensemble ratings, but since this
correlation does not replicate in Experiment 3 (see
below), this result was likely a type 1 error. Together,
these results are consistent with the idea that there are
separate underlying cognitive mechanisms mediating
the processing of single items versus ensembles of
multiple items (Cant et al., 2015).

Experiment 3

Ensemble perception can occur at speeds as fast as
100 ms, without the need to recognize individual items,
for both low level (Ariely, 2001; Chong & Treisman,
2003; Dakin & Watt, 1997; Parkes et al., 2001) and
high level (Haberman & Whitney, 2009; Li et al.,
2016; Yamanashi Leib et al., 2016) visual features.
Similarly, gist perception of individual scenes can occur
just as rapidly at various levels of feature complexity
(Oliva, 2005; Potter & Faulconer, 1975). The speed
that these cognitive processes can occur is beyond
the temporal limits of attention in object processing
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Figure 6. Correlating the processing of spatial boundary and scene content in Experiments 2 and 3. For both single scenes and six-item
scene ensembles, the correlations between spatial boundary and scene content task performance metrics (Fisher Z values) were
analyzed at all presentation times. *p < 0.05, **p < 0.01.

(Verstraten, Cavanagh, & Labianca, 2000), suggesting
that ensemble processing occurs before consolidation of
items into visual working memory (McNair et al., 2017;
Whitney & Yamanashi Leib, 2018). However, other
studies have shown that visual working memory can
influence both scene (Cronin, Peacock, & Henderson,
2020) and ensemble perception (Williams et al., 2021),
suggesting that these cognitive processes are not
completely independent. Given these contradictory
findings, the purpose of Experiment 3 was to investigate
whether or not the rapid scene ensemble perception
observed in Experiment 2 could be explained by the
utilization of visual working memory resources. We did
this by replicating Experiment 2 (at a presentation time
of 250 ms to provide the potential for working memory
engagement; Friedman, Cycowicz, & Gaeta, 2001; Liu,
Yin, Guo, & Ye, 2024), but importantly included an
additional 2AFC task to measure working memory
capacity in terms of how many items were remembered
in a six-item ensemble (see General Methods).

Results and discussion

Task performance metric
The task performance findings found in Experiment 3

replicated the findings in Experiment 2. Specifically,
the task performance metrics for all set-sizes
were significant for both average scene content

(All z > 0.61, r′z > 0.54, p < 0.001,N = 38) and
spatial boundary ratings (All z > 0.86, r′z > 0.70, p <
0.001,N = 38; see Figure 7). When performing mixed
model analyses on task performance metrics for each
scene feature, set-size (scene content: t(147) = 12.21, p
< 0.001, β = −1.21; spatial boundary: t(146) = 6.10,
p < 0.001, β = −0.44), repetition (scene content:
t(147) = 6.52, p < 0.001, β = 1.94; spatial boundary:
t(146) = 5.96, p < 0.001, β = 1.14) and the set-size x
repetition interaction for scene content(t(147) = 3.21,
p < 0.001, β = −0.73) were all significant. The set-size
x repetition interaction for spatial boundary was
nonsignificant (t(688) = 1.46, p = 0.14, β = −0.20).
Once again, the trend of decreasing Fisher Z values
as set size increases (blue regression line, see Figure 7)
suggests that although participants were able to
accurately perceive the average features of the scene
ensembles at all set-sizes, they had increasing difficulty
with this task as more items were introduced into the
ensembles.

Ensemble integration metric
The ensemble integration metric findings

in Experiment 3 also replicated the results of
Experiment 2. When performing mixed model analyses
on ensemble integration metrics for each scene feature,
significant effects were found for set-size (scene content:
t(144) = 8.20, p < 0.001, β = 0.49; spatial boundary:
t(144) = 6.40, p < 0.001, β = 0.34), repetition for scene
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Figure 7. Results for Experiment 3. Fisher Z values are plotted as a function of set-size for scene content (left) and spatial boundary
(right) ratings of scene ensembles at 0.250 second, for both the ensemble integration (green) and task performance (blue) metrics.
Standardized beta values for set-size (β) are provided and color-coded within each graph, and are visualized as a regression line.
Working memory capacity for encoding ensembles made up of six scenes is visualized by a vertical red dashed line. ***p < 0.001.

content (t(144) = 2.63, p < 0.001, β = −0.42), and
the repetition x set-size interaction for both features
(scene content: t(144) = 7.20, p < 0.001, β = 0.85;
spatial boundary: t(144) = 3.63, p < 0.001, β = 0.36)
(see Figure 7). The effect of repetition for spatial
boundary was nonsignificant (t(144) = 0.81, p = 0.42,
β = 0.11). Similar to Experiment 2, participants were
globally attending to and integrating all items at each
set size to extract scene ensemble summary statistics.
This is signaled by the increasing Fisher Z values as
set size increases for ratings of both average scene
content and spatial boundary (green regression line,
see Figure 7).

Working memory capacity
We found that the average working memory

capacity was 1.39 out of six scenes, suggesting that
participants were not relying on working memory
to extract summary statistics for both global scene
features, since they could reliably integrate six
scenes into their ensemble percepts (see Figure 7).
This is consistent with findings demonstrating
that rapid ensemble perception can occur without
consolidation of individual items within visual
working memory (McNair et al., 2017; Whitney &

Yamanashi Leib, 2018). Based on this, we suggest
that ensemble perception for high-level scene
features occurs independently from working memory
mechanisms.

Correlations between scene features
Similar to Experiment 2, we wanted to evaluate the

interactivity (or lack thereof) between the processing
of scene content and spatial boundary for both
single scenes and scene ensembles. In Experiment 3,
there was a significant correlation between scene
content and spatial boundary ratings for single scenes
(r(36) = 0.45, p < 0.01, BF10 = 9.28), with substantial
evidence provided for the alternative hypothesis
(Jeffreys, 1961) (see Figure 6). However, there was
no significant correlation between scene content and
spatial boundary ratings for 6-item scene ensembles
(r(34) = 0.27, p = 0.11, BF10 = 0.68), with anecdotal
evidence provided for the null hypothesis (Jeffreys,
1961). Together, these findings replicate those from
Experiment 2, and collectively suggest that while the
processing of scene content and spatial boundary is
correlated in the perception of individual scenes (at
presentation times of 250 ms or faster), the extraction
of summary statistics for these global scene features
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Figure 8. Experimental design for a single reporting trial in Experiments 4 and 5, and a single memory trial in Experiment 5. At the
beginning of every trial, an ISI fixation cross was presented for 0.5 second. In Experiment 4, the ISI was followed by a circular scene
presented in the center of the screen for one second. For Experiment 5’s reporting trials, the ISI was followed by a one-, two-, four-, or
six-item scene ensemble arranged within a 512 × 768 pixel grid for 0.250 second. For Experiment 5’s memory trials, the ISI was
followed by 6 scene images arranged within a 512 × 768 pixel grid for 0.250 second. In Experiment 5, after all stimulus presentations,
a backward mask was presented for 0.25 second. After the stimulus presentation (and masking where applicable), participants were
asked to make a response within 10 seconds. For reporting trial responses in Experiments 4 and 5, participants were asked to report
the orientation of a single scene, or the average orientation of the scene ensemble, respectively, using their mouse to rotate an arrow
on the screen. For memory trial responses in Experiment 5, one of the six images presented was displayed, along with an image that
was not a member of the previously displayed ensemble. Participants indicated which of the two images they had seen previously.

can be done independently in the perception of scene
ensembles.

Experiments 4 and 5

In both Experiments 2 and 3, participants were
able to rapidly extract scene ensemble summary
statistics for both average scene content and spatial
boundary. This was consistent with our predictions,

based on the principle of feature diagnosticity. Namely,
informative low-level features that are consistent with
top-down scene expectations are given preferential
processing, compared with less diagnostic features, to
complete a given visual task (Schyns & Oliva, 1997).
Interestingly, we found that task performance decreased
with increasing set-sizes, and while performance was
still accurate in the six-item whole-set condition, this
finding suggested that participants were finding it
increasingly difficult to generate summary statistics as
more scenes were incorporated in the scene ensemble
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stimuli. This runs counter to previous findings using
object and face ensembles, which collectively suggest
that performance should be unaffected by increasing
set sizes (Alvarez, 2011; Whitney & Yamanashi
Leib, 2018). One possible explanation for this is
that either the stimulus category (i.e., scenes) or
the visual features extracted (i.e., scene content and
spatial boundary) from scene ensembles require
comparatively more higher-level visual processing
resources than features extracted from object and
face ensembles. Based on the design of Experiments 2
and 3, it is unclear whether the nature of the stimulus
category or the computational load associated with
the feature extracted was more responsible for the
observed decline in task performance as set size
increased.

To address this, as well as the role of feature
diagnosticity in scene ensemble perception, we
conducted two additional experiments where we had
participants assess the orientation of either rotated
single scenes (Experiment 4) or the average orientation
of rotated scene ensembles (Experiment 5). Arguably,
the informative low-level features for the perception of
scene orientation (i.e., cardinal edges for upright scenes,
oblique edges for rotated scenes) are visually simpler
(i.e., less computationally demanding) to process
than the low-level features used in the perception of
scene content and spatial boundary (e.g., the LSFs
and textures for natural scenes, and smooth spatial
frequency gradients and sparse edge content for open
scenes (Bar, 2004; Brady & Shafer-Skelton, 2017;
Greene & Oliva, 2009a; Oliva et al., 2011; Walther &
Shen, 2014).

Normally, we expect scenes to be upright, and thus
will expect to prioritize attending to horizontal and
vertical lines to obtain orientation information (Bar,
2004; Nasr & Tootell, 2012). For upright scenes, this
expectation allows for informative cardinal edges to
act as diagnostic features to extract scene orientation.
However, by using rotated scenes, we are creating a
conflict between the processing of low-level visual
features (i.e., relying on oblique edges) and top-down
expectations (i.e., relying on cardinal edges) when
perceiving scene orientation (Girshick et al., 2011;
Hubel & Wiesel, 1968; Nasr & Tootell, 2012; Shapley &
Tolhurst, 1973). This task is made even more difficult
by using circular apertures for rotated scenes. By using
circular apertures and eliminating rectangular frame
edges, we eliminate potential external orientation
cues that could artificially bias perception, thereby
isolating intrinsic scene features such as tilted horizons
(Anderson et al., 2020; May & Zhaoping, 2016).
This approach ensures that the task relies solely on
internal scene statistics rather than external framing
cues (Greene & Oliva, 2009a). This conflict was
not apparent when perceiving average scene content
and spatial boundary in Experiments 2 and 3, and

thus serves as another test case for the principle of
feature diagnosticity in ensemble scene perception.
Finally, in Experiment 5, we again examined ensemble
performance against visual working memory capacity,
in the same manner as investigated in Experiment 3.

In Experiment 4, we had participants report the
orientation value of individual rotated scenes to
determine which scenes had the most perceptually
discernable orientations (i.e., the lowest “orientation
difficulty” scores; see General Methods – Data
Analysis). In order to test the inter-rater reliability
for the participants’ orientation difficulty scores,
two-way mixed intra-class correlation coefficients were
calculated for orientation reports of all stimuli to
examine absolute agreement across average responses.
Next, the “best” 100 stimuli were selected (i.e., scenes
with the lowest orientation difficulty scores) to generate
8 scene ensembles to use in Experiment 5 (see General
Methods—Data Analysis). If task performance when
estimating average orientation still decreases with
increasing set-size in Experiment 5 (similar to ratings
of average scene content and spatial boundary), then it
is likely the nature of the stimulus category used (i.e.,
scene vs. object and face ensembles) that explains the
task difficulty trend observed in Experiments 2 and 3.
However, if task performance does not decline with
increasing set sizes when estimating average orientation,
then the computational load associated with the average
feature extracted (i.e., average scene content and spatial
boundary vs. orientation) likely explains the task
difficulty trend observed in Experiments 2 and 3.

With regard to item integration, since object
orientation can be rapidly and accurately extracted
from object ensembles (Dakin & Watt, 1997), one
possibility is that average scene orientation will also be
rapidly and globally extracted from scene ensembles
(i.e., the ensemble integration metric will increase with
increasing set sizes). However, there is another possible
finding. The perception of average orientation from
rotated scenes involves the processing of low-level
oblique edges that are in conflict with high-level
expectations of using cardinal edges to determine
orientation during scene processing (Girshick et al.,
2011; Hubel & Wiesel, 1968; Nasr & Tootell, 2012;
Shapley & Tolhurst, 1973). Because of this conflict
between the bottom-up processing of visual cues
and top-down expectations, which was not apparent
when processing average scene content and spatial
boundary in Experiments 2 and 3, it may be quite
challenging to extract average orientation from a group
of rotated scenes (i.e., the ensemble integration metric
will not increase with increasing set sizes). This lack of
multiple item integration may occur despite orientation
appearing to be a more basic lower-level visual feature
compared to scene content and spatial boundary, thus
revealing the importance of feature diagnosticity in
scene ensemble processing.
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Figure 9. Results for Experiment 5. Fisher Z values are plotted as
a function of Set-Size for estimates of average scene orientation
at 0.250 second, for both the ensemble integration (green) and
task performance (blue) metrics. Standardized beta values for
set-size (β) are provided and color-coded within each graph and
are visualized as a regression line. Working memory capacity for
encoding ensembles made up of six scenes is visualized by a
vertical red dashed line. ***p < 0.001.

Experiment 4 results and discussion

For Experiment 4, good absolute agreement was
observed for participants’ orientation difficulty scores
(ICC = 0.87; Koo & Li, 2016), suggesting that people
were consistent in their ability to determine the
orientation of each individual scene.

Experiment 5 results and discussion

Task performance metric
First, we wanted to determine whether task

performance metrics were significant across set-sizes,
suggesting that perceptually reported average
scene ensemble orientations were significantly
correlated with the correct mathematical average
orientation. This was the case, as the task
performance metrics for all set-sizes were significant
(All z > 1.38, r′z > 0.88, p < 0.001,N = 61;
see Figure 9). Next, we wanted to determine if

task performance metrics decreased with increasing
set-sizes (as was found in Experiments 2 and 3). When
performing mixed model analyses on task performance
metrics, set-size (t(232) = 14.30, p < 0.001, β = −1.59),
repetition (t(232) = 10.80, p < 0.001, β = 3.64) and
the set-size × repetition interaction (t(232) = 7.77,
p < 0.001, β = −2.08) were all significant. Thus the
results of Experiments 2 and 3 were replicated, but
with a different summary statistic. Participants had
difficulty reporting the average orientation from scene
ensembles as set size increased (see the blue regression
line in Figure 9). This suggests that it is the nature
of the stimulus category used (i.e., scene vs. object
and face ensembles) that explains the task difficulty
trend observed in Experiments 2 and 3, rather than
the computational load associated with the average
feature extracted (i.e., average scene content and spatial
boundary vs. orientation).

Ensemble integration metric
To investigate the principle of feature diagnosticity

in scene ensemble processing, we examined ensemble
integration metrics for participants’ reports of average
scene orientation. Recall that support for feature
diagnosticity would be reflected as similar ensemble
integration values across set sizes, likely due to a
mismatch between the processing of bottom-up visual
cues in rotated scenes (i.e., oblique edges) and top-down
expectations of orientation information from more
frequently encountered upright scenes (i.e., cardinal
edges).

When performing mixed model analyses on
ensemble integration metrics, the effect of repetition
(t(227) = 2.63, p < 0.05, β = 0.78) was significant,
but the effect of set-size (t(227) = −0.04, p = .97,
β = −0.004) and the repetition x set-size interaction
(t(227)= −0.04, p= .97, β = −0.01) were nonsignificant
(see Figure 9). These results suggest that, unlike in
Experiments 2 and 3 where participants globally
integrated average scene content and spatial boundary
values of scene ensembles, here participants were
not able to globally integrate all 6 scenes into their
estimates of average scene orientation (see the green
regression line in Figure 9). Instead, participants relied
on sub-sampling strategies to generate percepts of
average orientation that approximated, but did not
closely match, the true mathematical average of the full
six-item scene ensemble. Together with the results of
Experiments 2 and 3, these results provide compelling
support that the principle of feature diagnosticity
contributes to scene ensemble processing. That is,
top-down expectations based on prior experience and
stored knowledge guide the visual system to prioritize
the processing of diagnostic low-level features to
complete the global visual task at hand (Oliva & Schyns,
1997).
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Working memory capacity
Given that average scene orientation was not globally

extracted across scene ensembles, it is also likely that
working memory resources were not recruited during
this task. Similar to Experiments 2 and 3, we found
that only 1.22 scenes were remembered out of six,
suggesting that participants were not using working
memory during the average orientation task.

General discussion

Across most ensemble studies, the stimuli tend to be
fairly simple in visual complexity (e.g., Gabor patches,
geometric shapes, objects, faces; Haberman & Whitney,
2007; Maule et al., 2014; Parkes et al., 2001). In
contrast, scenes are much richer in visual information,
requiring “gist” estimates of the environment (i.e.,
processing statistical features that correlate with scene
category meaning) (Oliva, 2005). Similar to ensemble
processing, gist perception helps the visual system
overcome capacity limitations in attention and working
memory (Dux & Marois, 2010; Luck & Vogel, 2013;
Simons & Levin, 1997). One hypothesized mechanism
underlying the extraction of “gist” information from
single scenes is the principle of feature diagnosticity,
whereby low-level visual features that are most
informative for a particular high-level scene property
are selectively prioritized for processing, guided by
top-down expectations of the observer (Lowe et al.,
2016; Oliva & Schyns, 1997; Oliva & Schyns, 2000).
The purpose of the present study was to investigate
the limits of ensemble processing by examining
whether summary statistics could be extracted for scene
ensembles. Specifically, we asked whether participants
could form summary representations of average scene
content, spatial boundary, and scene orientation, and
also examined the role of visual working memory
in these processes. Importantly, we assessed whether
the formation of such global, gist-based ensemble
percepts can be explained by the principle of feature
diagnosticity.

The results of Experiment 1 revealed that
participants could reliably rate the scene content and
spatial boundary of individual scenes. Using these
ratings from Experiment 1, Experiment 2 showed that
participants could rapidly extract both average scene
content and spatial boundary from scene ensembles
at presentation times as fast as 125 ms. These results
suggest that rapid coding of visual ensemble summary
statistics is not limited to geometric shapes, objects or
faces, but extends to visually complex scenes as well.
Importantly, the ensemble average was extracted by
globally attending to all six scene stimuli presented
(i.e., with no subsampling of the individual items),

evidenced by the rise of ensemble integration metrics
as set-size increased. We argue that average scene
content and spatial boundary are global ensemble
properties whose low-level diagnostic features match
top-down expectations, shaped by lifelong statistical
learning mechanisms (Geisler, 2008). This facilitates
the prioritization of these diagnostic low-level features
during scene ensemble processing, and allows for
the rapid extraction of summary statistics. Thus our
findings demonstrate that the principle of feature
diagnosticity extends from the processing of single
scenes to ensembles of multiple scenes. Interestingly,
although task performance remained high across
set-sizes one through six when rating average scene
features, it did decrease as set-size increased. This
suggests that although average scene content and spatial
boundary can be rapidly and accurately processed,
increased perceptual and cognitive load from larger
set-sizes has a modest impact on task performance.
This runs counter to past object ensemble literature,
which suggests that task performance remains constant
even as set-size increases (Alvarez, 2011). We explored
this finding further in Experiment 5 (see below).

Experiment 2 also investigated the effect of increasing
presentation time on scene ensemble processing. As
revealed by the sharper positive slopes for ensemble
integration metrics as presentation times increased
(see the green regression lines in Figures 3 and 4), the
results of Experiment 2 demonstrate that the processing
of average scene content and spatial boundary from
scene ensembles becomes more efficient when more
encoding time is available, possibly due to greater
engagement of global-processing mechanisms. This is
consistent with past literature suggesting that longer
intervals of information accumulation have a positive
effect on both scene and ensemble processing (Fei-Fei
et al., 2007; Roberts et al., 2019). There was also an
effect of presentation time on task performance for the
processing of average scene content (but not spatial
boundary), as evidenced by a more gradual decline
in task performance metrics as presentation times
increased (see the blue regression lines in Figures 3
and 4). This suggests that giving participants more
time to extract average scene content had a beneficial
impact on their ability to successfully perform the
task. The fact that this trend was not observed for
the processing of average spatial boundary may be
explained by differences in the perceptual and neural
processing of these two global scene properties. For
instance, using artificially-generated scenes and fMRI
multivoxel pattern analysis, Harel and colleagues
(2013) showed that scene content and spatial boundary
are represented distinctly, with the RSC encoding
spatial boundary information, the LOC encoding
content-related information, and the PPA integrating
both. Furthermore, also using fMRI multivoxel pattern
analysis, Kravitz, Peng, and Baker (2011) found that
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PPA could reliably decode scenes based on spatial
boundary (e.g., open vs. closed) but was less accurate
at decoding semantic categories (e.g., naturalness,
manufacturedness, place identities).

In Experiments 2 and 3 we investigated if the
processing of scene content and spatial boundary were
correlated, for both single scenes and scene ensembles.
Past literature has suggested that these features are
correlated in the processing of individual scenes, where
increasing amounts of naturalness is associated with
greater degrees of openness, and increasing amounts of
manufacturedness is associated with greater degrees of
closedness (Zhang et al., 2019). We also observed this
correlation in Experiments 2 and 3, but only at shorter
presentation times for single scenes (i.e., 125 ms and
250 ms). One potential reason for this is that when given
only a limited amount of time to view an individual
scene, the brain uses top-down mechanisms to help
fill in missing information. Indeed, rapidly presented
scenes undergo boundary extension when being later
recalled, which is a phenomena wherein schematically
consistent visual information is remembered beyond the
scene’s actual boundaries (Bainbridge & Baker, 2020).
Given the semantic association between scene content
and spatial boundary information described above,
it is plausible that boundary extension mechanisms
operate on both scene properties jointly to fill in
missing visual information when presentation times are
constrained.

Furthermore, we wanted to examine whether or
not the correlation between the processing of scene
content and spatial boundary for single scenes extended
to the encoding of average scene content and spatial
boundary in scene ensembles. The ensemble stimuli were
generated such that there was no correlation between
these global scene features, but we were interested in
examining if this mathematical independence extended
to the perceptual processing of average scene content
and spatial boundary. Across presentation times, we
did not observe a significant correlation between the
processing of these global features from 6-item scene
ensembles (except at a presentation time of 250 ms
in Experiment 2, but this effect did not replicate in
Experiment 3, and thus we choose not to interpret this
finding as a significant effect). One explanation could
be a failure of scene boundary extension mechanisms
when trying to integrate multiple high-level global scene
properties into a summary statistic. In addition, there
could be separate cognitive mechanisms involved in
the processing of single versus ensemble scene features,
which would be consistent with findings from single
object versus object ensemble perception (Cant et al.,
2015). Taken together, the findings from Experiments 2
and 3 suggest that scene content and spatial boundary
may be distinct features that can be independently
extracted from scene ensembles, highlighting the brain’s
flexibility in processing global visual information.

The independence observed between scene content
and spatial boundary ensemble processing is consistent
with Park et al.’s (2011) findings that LOC and PPA
are more sensitive to processing scene content and
spatial boundaries, respectively (however, this was only
investigated using single scenes). Moreover, OPA and
RSC have also been shown to be integral in scene spatial
boundary processing (Ferrara & Park, 2016; Julian,
Ryan, Hamilton, & Epstein, 2016), with the OPA
representing the major surfaces and planes of a scene
(e.g., floors, walls, ceilings), regardless of rearrangement
(Kamps et al., 2016). Future neuroimaging studies
should be conducted to investigate if the independent
processing of scene content and spatial boundary in
scene ensembles is mediated by independent neural
mechanisms in LOC and PPA/OPA/RSC, respectively,
and why separate neural regions responsible for
processing these global scene features does not lead to
independence in the processing of single scenes.

The fact that participants can accurately extract
high-level global scene ensemble features at very short
presentation times suggests that selective attention may
not be involved in this process. This is consistent with
numerous studies arguing that attention is not necessary
for ensemble perception. For example, ensemble
perception of Gabor orientation has been shown to
remain accurate even in instances of reduced attention
(Alvarez & Oliva, 2009), and ensemble features can
be accurately reported even when they are outside
the focus of direct attention (Alvarez & Oliva, 2008).
Furthermore, in the absence of conscious awareness,
global spatial regularities found within object ensembles
can increase the scope of spatial attention (Zhao & Luo,
2017). Finally, a high working memory load – which also
limits resources of selective attention - does not appear
to affect the accuracy of processing object ensemble
summary statistics (Desimone, 1996; Downing, 2000;
Epstein & Emmanouil, 2017). We contend that
the principle of feature diagnosticity can explain
the potential effects of attention (or lack thereof)
in ensemble scene processing in the present study.
That is, by prioritizing the processing of diagnostic
low-level features such as spatial frequency patterns
and edge structures that correspond to perceived
naturalness (Geisler, 2008; Greene & Oliva, 2009a;
Walther & Shen, 2014) and openness (Walther & Shen,
2014), the visual system efficiently extracts summary
representations while circumventing attentional
capacity limits through selective encoding and
processing strategies (Hansmann-Roth, Kristjánsson,
Whitney, & Chetverikov, 2021).

With this being said, findings demonstrating that
attention is not required for ensemble perception do
not necessarily imply that attention plays no role in
ensemble processing. For example, in our study we
found that task performance for average scene content
ratings improved with increasing presentation time.
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This is consistent with long-standing research that
attention can enhance spatial resolution within an
attended visual field (Yeshurun & Carrasco, 1998a;
Yeshurun & Carrasco, 1998b), with longer presentation
times leading to improved information accumulation
(Carrasco & McElree, 2001). Moreover, within the
ensemble perception literature, attended items have been
shown to make heightened contributions to mean size
estimates compared to non-attended items (De Fockert
& Marchant, 2008). Similarly, more salient items within
an ensemble tend to be weighed more in the perceived
ensemble average than less salient items, without fully
discounting the less salient items (Iakovlev & Utochkin,
2021). More recently, Knox and colleagues (2024) found
that action-driven attention towards visual feature cues
can bias later reports of average ensemble size, but
this effect occurs only when attention is directed at
task-relevant (i.e., size) but not irrelevant (i.e., color)
features. Furthermore, when attention is efficiently
captured in demanding dual-task paradigms, there
can be inattentional blindness to changes in low-level
object-ensemble properties (Jackson-Nielsen, Cohen, &
Pitts, 2017), suggesting at least some minimum level of
attention may be necessary for ensemble perception.
Together, while there is not consensus on whether or
not attention is required for ensemble perception, there
is growing evidence in the literature supporting our
findings that attention can modulate scene ensemble
processing (at least for average scene content ratings).

Another key aspect of ensemble perception is that
working memory resources are not required (Whitney &
Yamanashi Leib, 2018), since single object recognition
is not necessary to extract ensemble summary statistics
(Haberman, Brady, & Alvarez, 2015). For instance,
average circle size can still be extracted during object
substitution masking, which greatly reduces the
visibility of individual circles (Choo & Franconeri,
2010). Furthermore, complex object ensemble features
like average lifelikeness and economic value do not
require working memory resources to be encoded
(Yamanashi Leib et al., 2016, 2020). However, recent
studies have suggested that the contents of working
memory can interfere with ensemble processing.
Williams et al. (2021) found that reports of the average
orientation of differently colored lines become skewed
towards the average orientation of a subset of lines
that match the color of a novel object held in working
memory. Furthermore, these findings were replicated
with high-level stimuli, replacing mean orientation
of different colored lines with mean facial identity
judgements of colored faces (Pan, Zheng, Li, & Wang,
2022). The results of Experiment 3 in the current study
demonstrated that the processing of average scene
content and spatial boundary did not require working
memory resources, since on average less than 1.39
items were remembered out of 6, yet results from the
ensemble integration analysis revealed that participants

were incorporating up to 6 items into their ensemble
percepts. On the surface, this seems to be at odds
with the results of Williams and colleagues (2021).
However, that study used a dual-task design, wherein
participants first held the color and shape of a novel
object in working memory, then made an ensemble
judgment on a separate stimulus display, and finally
made a same/different judgment based on the features
of the object held in visual working memory. Our study
did not utilize such a dual-task design, and found no
involvement of working memory in the extraction
of high-level scene ensemble features. Future studies
should investigate if such a finding replicates when the
contents of visual working memory are occupied with a
visual feature that is correlated with a feature from the
ensuing ensemble display.

In both Experiments 2 and 3, we found that
increasing set-sizes led to a decline in task performance,
for ratings of both average scene content and spatial
boundary. These results are not consistent with previous
studies demonstrating that the efficiency of ensemble
perception remains stable (Alvarez, 2011; Alvarez
& Oliva, 2008; Haberman & Whitney, 2007). These
discrepant findings can be attributed to at least two
different scenarios. On the one hand, if the use of
visually complex scenes (vs. simpler geometric shapes,
objects, or faces, as traditionally used in the literature) in
our ensembles led to a decline in performance, we would
expect task performance to still decline with increasing
set-sizes for the processing of a different ensemble scene
feature, namely average scene orientation. On the other
hand, if the high-level nature of the scene feature being
processed led to the decline in performance, then we
should not observe the same results when participants
extract average scene orientation, since it is a lower-level
feature compared with average scene content and
spatial boundary, and hence has less of a computational
load associated with its processing. To investigate this,
in Experiment 5 we had participants report the average
orientation of scene ensembles made up of individually
rotated scenes. We found that despite scene orientation
being a visually simpler scene feature to process (i.e.
requiring only attention to oblique edges) compared
with scene content and spatial boundary, we again
observed a decrease in task performance as set sizes
increased, replicating the results of Experiments 2
and 3 which focused on higher-level features of scene
content and spatial boundary. These results suggest that
it is the visual complexity of the stimulus category that
impacted ensemble task performance, as opposed to the
computational load associated with the processing of
the summary feature in question.

Interestingly, unlike average scene content and
spatial boundary, participants had difficulty globally
integrating information about average orientation
across all scenes. This was likely because the low-level
feature that needed to be processed to extract average
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orientation in our rotated scenes (i.e., oblique edges)
conflicted with the high-level top-down expectations.
Participants expect to utilize cardinal edges to assess
scene orientation. since scenes are typically encountered
upright (Girshick et al., 2011; Hubel & Wiesel, 1968;
Nasr & Tootell, 2012; Shapley & Tolhurst, 1973). The
consequence of this manipulation was that the visual
system had difficulty prioritizing the oblique edges
in rotated scenes for the rapid extraction of average
orientation. Thus, instead of globally integrating
orientation information from all images, it appears as
though participants relied on a strategy where a smaller
number of individual scenes was subsampled in an
attempt to accomplish the task.

Taken together, the results of our study suggest that
global visual processing circumvents limitations in
attention and memory resources via the principle of
feature diagnosticity. Based on findings using individual
scenes, we assume this is due to preferentially processing
spatial frequency information and edge statistics
when encoding average scene features. For average
scene content ratings, this would involve prioritizing
low spatial frequencies and complex textures for
natural scenes (Geisler, 2008; Greene & Oliva, 2009a)
versus high spatial frequencies and cardinal edges for
manmade scenes (Greene & Oliva, 2009a; Walther &
Shen, 2014). For average spatial boundary ratings, this
would involve prioritizing smooth spatial frequency
gradients and sparse edges for open scenes (Park et al.,
2011) versus abrupt high spatial frequency transitions
and dense edges for closed scenes (Park et al., 2011;
Walther & Shen, 2014). For average scene orientation
ratings, the informative obliques edges could not act
as diagnostic cues for the task, because they were in
conflict with the top-down expectation of using cardinal
edges, preventing scene ensemble integration (Girshick
et al., 2011; Nasr & Tootell, 2012).

Alternatively, it may be that scene ensemble
perception and the formation of summary statistics is
achieved via the processing of other low-level features.
One mechanism could be through detecting contrast
differences in scenes, since improving contrast has
been shown to facilitate scene recognition (Sebastian,
Seemiller, & Geisler, 2020). In addition, color might
act as a diagnostic feature to facilitate scene ensemble
processing. For example, Gegenfurtner and Rieger
(2000) have demonstrated that color enhances scene
recognition by facilitating both sensory (e.g., detecting
scene identity using diagnostic color cues such
as the blue water of an ocean scene, or the green
leaves of a forest scene) and cognitive processing
(e.g., enhancing memory encoding and retrieval
of scene identity through distinctive color cues).
Future studies should be conducted to explicitly
determine which low-level visual properties guide
feature diagnosticity during scene ensemble processing.
Interestingly, Kanaya, Hayashi, and Whitney (2018)

found amplification effects in ensemble perception,
where salient low-level visual features within the
ensemble biased ensemble average percepts. Future
studies could explore this further by taking diagnostic
features within scenes and modulating their salience.
As set-size increases, one could expect to see decreases
in task performance to be accentuated with lower
feature saliency, and attenuated with higher feature
saliency.

In addition to relying on diagnostic low-level
features, the principle of feature diagnosticity involves
top-down expectations that help to prioritize certain
low-level features during perceptual processing (Schyns
& Oliva, 1997). This is consistent with an extensive
literature highlighting how expectations influence scene
processing. For example, in priming paradigms, target
scenes are recognized more quickly and accurately when
initially primed with scenes of the same spatial layout
(Sanocki & Epstein, 1997). More recently, McLean
and colleagues (2023) had participants view sequences
of scenes leading to an expected destination (e.g.,
walking down a sidewalk leading to a store interior).
They found that participants processed the gist of
the final scene more quickly and accurately if it was
congruent (e.g., store interior) versus incongruent (e.g.,
a bedroom) with their expectations. When looking at
the effects of long-term semantic memory, local objects
in natural scenes are more easily processed when they
are placed within congruent versus incongruent scenes
(Davenport & Potter, 2004), and when they are placed
in typical versus atypical locations (Kaiser & Cichy,
2018). Furthermore, expectations of typical scene
function (e.g., kitchens are for cooking food, bedrooms
are for sleeping) have been shown to better predict scene
categorization than object content and low-level visual
features (Greene, Baldassano, Esteva, Beck, & Fei-Fei,
2016). These known high-evel and top-down effects on
scene processing could help explain the mechanisms
underlying feature diagnosticity in ensemble processing.
Namely, during scene ensemble processing, expectations
of which low-level scene features should be present in
one’s visual field can help the visual system quickly
locate diagnostic low-level information for the task
at hand (e.g., the formation of scene-based global
summary statistics).

Overall, across 5 experiments we demonstrated that
both average scene content and spatial boundary can
be rapidly, accurately, and globally extracted from
scene ensembles, and without reliance on working
memory resources. By prioritizing the processing of
diagnostic low-level features that are consistent with
top-down expectations of scene identity, the visual
system is able to mitigate attentional limitations during
scene ensemble processing. However, unlike previous
results in the ensemble literature (using simpler stimuli;
see Alvarez, 2011; Alvarez & Oliva, 2009; Haberman
& Whitney, 2007), scene ensemble task performance
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decreased with increasing set-sizes, suggesting that
the visual complexity of scenes makes extraction
of summary statistics more challenging compared
with other ensemble stimuli. Finally, participants
were not able to globally integrate multiple scenes
when attempting to form percepts of average scene
orientation, since information about the oblique edges
required to extract average scene orientation in rotated
scenes was in conflict with top-down expectations of
using cardinal edges in more typically encountered
upright scenes (Girshick et al., 2011; Hubel & Wiesel,
1968; Nasr & Tootell, 2012; Shapley & Tolhurst,
1973). This suggests that there are inherent perceptual
limitations when extracting certain ensemble summary
statistics. Together, these novel results reveal the
flexibility of ensemble perception in being able to
extract global features from visually complex stimuli,
and highlight the importance of the principle of feature
diagnosticity in this process.

Keywords: scene perception, ensemble perception,
vision, working memory
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